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Abstract— Infants’ ability to recognize and categorize objects
develops gradually. The second year of life is marked by both the
emergence of more semantic visual representations and a better
understanding of word meaning. This suggests that language input
may play an important role in shaping visual representations.
However, even in suitable contexts for word learning like dyadic
play sessions, caregivers utterances are sparse and ambiguous,
often referring to objects that are different from the one to
which the child attends. Here, we systematically investigate to
what extent caregivers’ utterances can nevertheless enhance visual
representations. For this we propose a computational model of
visual representation learning during dyadic play. We introduce
a synthetic dataset of ego-centric images perceived by a toddler-
agent that moves and rotates toy objects in different parts of
its home environment while “hearing” caregivers’ utterances,
modeled as captions. We propose to model toddlers’ learning
as simultaneously aligning representations for 1) close-in-time
images and 2) co-occurring images and utterances. We show that
utterances with statistics matching those of real caregivers give
rise to representations supporting improved category recognition.
Our analysis reveals that a small decrease/increase in object-
relevant naming frequencies can drastically impact the learned
representations. This affects the attention on object names within
an utterance, which is required for efficient visuo-linguistic align-
ment. Overall, our results support the hypothesis that caregivers’
naming utterances can improve toddlers’ visual representations.

I. INTRODUCTION

Second-year toddlers are proficient learners of object repre-
sentations that support the recognition of objects independently
of viewpoint (object instance recognition) and the assignment
of novel exemplars to learned categories (object categorization
recognition). What learning mechanisms support this develop-
ment? On one side, there is evidence that biological organisms
learn similar representations for close-in-time visual inputs [1],
[2]. This is called the slowness principle [3] and it supports the
building of view-invariant object representations during, e.g.,
object manipulations [4], [5]. On the other side, the acquisition
of object names correlates with a stronger focus on global
shape features relative to texture [6], [7], [8], which spurs
performance in name-agnostic categorization tasks [9], [10],
see also [11]. For learning object names, the synchronization
of toddlers’ visual attention on the object and its naming by
the caregivers is crucial [12]. Dyadic play could be particularly
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important for promoting the emergence of more semantic
object representations, because both learning mechanisms are
likely to co-occur during such play: the toddler extensively
focuses on/manipulates objects and the caregiver frequently
talks to the toddler about the present objects [13], [14].
However, naming utterances during such play are sparse [15]
and ambiguous: they typically contain several words unrelated
to the object. Furthermore, even though toddlers have biased
attention towards held objects [16], they often play in contexts
that admit several other objects in the background [17], [18],
adding another potential source of confusion.

In this paper, we investigate two what extent dyadic play
sessions can support the emergence of semantic object repre-
sentations in toddlers. We tackle this question by proposing a
computational model of toddlers’ learning during dyadic play.
First, we introduce the Dyadic Play Dataset, a novel dataset of
images simulating at-home ego-centric dyadic play sessions.
In this dataset, we simulate a playing toddler that moves and
turns 3D toy models extracted from the Toy4k dataset [19].
The agent “plays” in front of a background composed of
household furniture (cf. Fig. 1A) and a plausible number of
toys scattered on the floor (cf. Fig. 1B). As shown in Fig. 1C,
The agent occasionally “hears” caregiver’s utterances, modelled
as captions extracted from the CHILDES database, a com-
prehensive data repository of children’s language acquisition
including child-directed speech [20]. Then, we consider a bio-
inspired model of toddlers’ learning that 1) maps close-in-
time visual inputs to similar representations and 2) similarly
aligns the representations of visual inputs and co-occurring
naming utterances (Fig. 1D). We further simulate toddlers’
visual attention by biasing the model to extract visual features
from the currently held object. The overall model allows us
to systematically study the potential impact of the sparsity
and ambiguity of naming utterances on the learned visual
representations.

Our experiments show that utterance statistics reported in
developmental psychology experiments support the construc-
tion of semantic visual representations. Our analysis shows that
realistic object-relevant naming frequencies fall within a range
of values for which a multiplicative factor of two drastically
impact the learned representation. This impacts whether the
model attends to the object name within an utterance, which
is necessary to efficiently guide visual representations. Thus,
our paper provides computational support to the hypothesis
that caregivers’ sparse and ambiguous utterances help to build
visual representations during dyadic play sessions.



Fig. 1. A) Top view of the Virtual Home Environment, where blue and red dots, respectively, indicate possible agent and toy positions. The agent is always
turned towards a toy position. Toy positions marked 1–3 correspond to sessions 1–3 in C. B) Zoom-in of the scene in A with turquoise lines indicating the
agent’s field of view. C) Images extracted in a temporally ordered fashion (left to right) for three different “play” sessions of the Dyadic Play Dataset. Text boxes
show examples of captions related to the manipulated object (white) or to another object in the background (red). D) Summary of the learning architecture, see
Section III-B for details. Abbreviations: MLP: multi-layer perceptron, MMCL: multimodal contrastive learning, CLTT: contrastive learning through time.

II. RELATED WORK

a) Models of toddlers’ object learning: Recently, the
availability of datasets of images extracted from toddlers’
head-mounted cameras [17], [21] has enabled the study of
representations learnt through the senses of toddlers. This way,
two recent models managed to learn word-vision mappings, but
they either used a pretrained vision model [22], [23] or trained
on curated data in a supervised fashion [23]. Another model
extracted semantic visual representations by making similar
close-in-time representations [24], but it did not leverage any
sort of utterances. Working with such real-world ego-centric
data has the limitation that a precise control of the statistics
of the training data, like the sparsity or ambiguity of naming
utterances, is difficult. This makes it hard to study how such
statistics might affect toddlers’ object learning. A recent model
also trained visual representations in cross-situational contexts,
i.e. when naming utterances can refer to several visible objects
[25]. However, they only consider synthetic images based on
9 digits rather than simulated ego-centric play sessions.

b) Slowness principle for learning visual representations:
Several computational models showed that making similar
close-in-time representations can lead to visual representation
suitable for object instance recognition, scene recognition and
object categorization [26], [27], [28], [29]. Integrating con-
straints from toddlers’ perceputal experience into these models,
like short arms or foveation, can lead to improved ability to
recognize objects in front of novel backgrounds [30]. None
of these works modelled interactions with a caregiver whose
utterances provide weak language supervision.

c) Visuo-language representation learning: Previous
works explored multi-modal contrastive learning of audio-
visual or text-visual representations and showed that language
can supervise visual representation learning [31], [32], [33].
However, none of these works studied whether naming statistics
in dyadic play sessions elicit semantic visual representations.
A recent work showed that adding sparse labeling on top of
contrastive learning through time enhances visual categoriza-
tion [30]. Unlike them, we here consider textured objects in
a cluttered home environment and developmentally-relevant
statistics of caregivers’ utterances.

III. METHODS

In this section, we expose our computational model of visual
representation learning during dyadic play. We first describe the
Dyadic Play Dataset, which simulates dyadic play with objects
(Section III-A). Then, we explain in Section III-B how we
model a toddler’s learning process.

A. Dyadic Play Dataset (DPD)

The DPD contains 857,760 images of 224× 224 pixels split
into 42,888 “play sessions,” each containing 20 images. There
are 12 sessions dedicated to each of 3574 objects [29], which
are extracted from the Toys4k dataset [19]. To create them,
we simulate a toddler that interacts with objects using the
simulation platform ThreeDWorld (TDW) [34].

a) Image recording: At the beginning of each play ses-
sion, we place the agent in a random location, with a random
orientation within the Virtual Home Environment [29] (cf.
Fig. 1A). We approximate an ego-centric view of a seated



toddler by positioning a camera at 0.4 m above the ground. At
the beginning, the camera always watches the object being held,
which we call “main object,” making the camera orientation
dependent on the initial position of the main object. Because
toddlers’ short arms constrain the way they hold objects, we
randomly sample the relative starting position of the main
object within a distance range of [0.25; 0.35] m from the agent,
[−30; 30]◦ on the sides and [−30;−10]◦ in elevation. Fur-
thermore, toddlers tend to keep objects in an upright position
[35], hence, we randomly orient the object around the yaw
axis (unbounded) but bound the object orientation in [−5; 5]◦

around the pitch and roll axes.
In addition to the main object, we add 5 to 20 randomly sam-

pled (without replacement) background objects to the scene,
following the number of toys commonly present in the field of
view of toddlers during play [17]. To place them, we follow the
same procedure as for the main object, but change the range of
distances from the agent to [0.42; 0.875] m. In contrast to the
object being held, we let them fall to the floor one at a time
using the physics engine of TDW. Fig. 1B shows a top-view
of a subsequent play area.

To simulate natural interactions, in each of the 20 frames of
the play sessions the agent slowly moves and turns the object
along/around the three axes. We display a high variability of
manipulation sequences by generating all movements with an
Ornstein-Uhlenbeck stochastic process for which we randomly
generate a new recall coefficient in [0.1, 1] at the beginning of
each session, for each kind of manipulation and axis. Thus,
the agent dynamically changes the manipulation speed within
a session, as well as the amplitude of changes from one session
to the next, independently for each axis of rotation/motion. We
bound the motion speed by 3◦ per frame for side/elevation
motion and 0.05 m for in-depth motion. However, the agent
can not exceed the starting absolute bounds described above.
Similarly, we bound the rotation speed by 20◦ around the yaw
axis and 4◦ around the pitch and roll axis, also to simulate the
upright bias of toddlers [35].

Finally, while the agent observes the moving object, it also
executes additional relative small eye movements around the
object in focus (yaw and pitch axis), whose endpoints are
sampled from a Normal distribution N ([0, 0], 2 × I). We also
allow the agent to focus its gaze on an object different from
the main one with probability 0.7; however, we discard these
images during training as previous methods already analyzed
the impact of changes of attention on contrastive through time
losses [27], [29]. Fig. 1D shows examples of the resulting
sequences of toddler-centric views.

For evaluation purposes, we build a test dataset of 5 images
per main object (a total of 17,870 images), each in different
scenes generated as above. To avoid correlated images, we do
not apply temporal manipulations used during training. Since
rotations around pitch/roll axis may go beyond their initial
boundaries after some manipulation time during training, it
may create a subsequent data distribution shift between train
and test images. Assuming that the pitch/roll rotations rarely

go beyond [−20; 20]◦ from their starting orientation during
training, we increase the initial range of test object orientations
to [−20; 20]◦ around the pitch and roll axis

b) Naming utterances: We aim to simulate
developmentally-relevant statistics of utterances from a
caregiver to a toddler during a play session. To achieve this,
we source relevant transcripts from the CHILDES database
[20]. Our study focuses specifically on transcripts from native
English-speaking children residing in North America and
the UK, between the ages of six months and two years. We
only keep utterances of caregivers. As we are interested in
object-related statements, we curate captions derived from
statements identifying objects from the Toys4k dataset [19].
To form general templates, we only keep captions that occur
across multiple object categories. After filtering out incomplete
utterances and those containing less than three words, as well
as a manual review, we retained 820 templates. Each of these
templates can be used with any category name without relying
on the context of the object.

B. Self-supervised learning of visual representations

In this work, we postulate that toddlers learn visual repre-
sentations that 1) slowly change over time and 2) align with
co-occurring linguistic representations. To model their learning
process, we consider two previously introduced self-supervised
loss functions. The first loss aligns embeddings of close-in-
time images; this entails that seeing an object from different
viewpoints elicits viewpoint invariant object representations
[27]. The second loss function aligns embeddings of co-
occurring images and naming utterances. Since the naming
utterance may inform about the category of the object in focus,
this provides weak supervision regarding the object category.
To implement our learning mechanisms, we use SimCLR [36],
a state-of-the-art contrastive learning algorithm. We sum up the
learning architecture in Fig. 1E.

a) Contrastive learning through time (CLTT): At each
learning iteration, we sample a mini-batch X that contains N
randomly sampled images xi. For each image xi, we also ran-
domly sample a single successor/predecessor xj belonging to
the same “play session” as xi. Thus, xi and xj always display
the same object, but observed through different orientations
and positions. In addition, we expect that the active and multi-
modal manipulation of the object biases toddlers’ attention onto
the main object [12], [16]; thus, we apply on images, with
probability 0.5, a center crop of size ranging in [8; 100]% of
the image size. Thereafter, we compute embeddings of images
z1 = g1(f(x)) using a feature extractor f and a projection
head g1, both implemented as neural networks [36]. Finally,
for a pair (zi, zj), we minimize
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where cos stands for the cosine similarity, Z1 contains all
embeddings z1 and τ is the temperature hyper-parameter [36].
The top part of (1) aims to move together image embeddings



that belong to the same manipulation session while the bottom
part of (1) ensures that all image embeddings remain dissimilar.

b) Multimodal contrastive learning: For each sampled
image xi, we also sample, if provided by the caregiver, its
co-occurring naming utterance li. We extract the pre-trained
features of the naming utterances with a state-of-art text em-
bedding model h [37]. Then, we compute different embeddings
of images z2i = g2(f(xi)) and captions z3i = g3(h(li)) using
projection heads g2, g3 and a text feature extractor h in order
to minimize, for each pair (z2i , z
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where Z2 contains the provided embeddings z2 and z3. The
top part of (2) ensures that co-occurring naming utterances and
images have similar embeddings while the bottom part prevents
all embeddings to collapse into a single vector.

The total loss function for a batch of size N is the symmetric
and batch-wise sum of (1) and (2):
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C. Developmentally-relevant utterance statistics

To model developmentally-relevant utterance statistics, we
extract statistics reported in at-home studies of toddlers’ dyadic
play sessions [13], [14]. First, [14] reports that 56% of naming
events match the visual input of toddlers. Thus, we define
the (conditional) probability of naming the manipulated object
(versus another object in the background) as pcorrect = 0.5.
Second, a caregiver approximately provides, on average, one
naming utterance related to the object being manipulated per
time-extended object manipulation [13] (exactly 2.54

2 = 1.27
in their study). Since our play sessions last for 20 frames,
we approximate the probability of naming the manipulated
object during a frame as pname = 1

20 = 0.05. We assume
that consecutive frames are spaced by one second, making the
duration of our play sessions correspond to the average of 20
seconds reported in [13]. Finally, it allows us to define the
probability of naming any object in a frame psparse =

pname

pcorrect
=

0.1.

D. Training and evaluation

a) Training: We use a ResNet18 [38] as vision encoder
f and, for all projection heads, a fully connected neural
network with one hidden layer of size 256 followed by batch
normalization and ReLU activation. For encoding the text, we
use a pre-trained BERT [37] with 4 layers, 8 self-attention
heads and a hidden size of 512, introduced as BERT-small by
[39]. We train our models for 50 epochs with the AdamW
optimizer, a learning rate of 0.001 and weight decay of 0.01.
We tested a temperature hyper-parameter τ ∈ {0.07, 0.1, 0.5}
and found 0.07 to be the best. The rationale behind using a
pre-trained text model lies in our research focus on visual
representation learning. Preliminary experiments (reported in
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Fig. 2. A) Category recognition accuracy and B) object instance recognition
accuracy for different settings. Oracle represents supervised learning, while
an Ideal caregiver consistently names the correct object. Plausible stands
for developmentally-relevant utterance statistics, Plausible* is identical but
trains the text encoder from scratch.
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Fig. 3. t-SNE visualization of the feature representations extracted by the
vision- and text-encoder in different training settings. For better visualization,
we show 10 random classes and a collection of randomly selected templates,
each incorporating category-specific names.

experiments Section IV-A), demonstrate comparable recogni-
tion performance, although with a longer convergence time
when training a randomly initialized text model concurrently
with visual encoding.

b) Evaluation: To evaluate if the learned representation
supports category recognition, we apply a repeated random sub-
sampling cross-validation to split the non-overlapping object
instances into 2382 train (2/3 of the total) and 1191 test objects
(1/3 of the total). Then, we extract images of train and test
objects to form the train and test datasets, respectively (see
Section III-A). To evaluate our representation with respect to
object instance recognition, we extract novel images of the
train objects to build a test dataset. For both object instance
and category recognition, we freeze the weights of the vision
encoder and train a linear classifier in an online and supervised
fashion on top of the latent visual representation [40].

IV. EXPERIMENTS & RESULTS

We first study whether developmentally-relevant utterance
statistics support learning semantic visual representations.
Then, we analyze the impact of the sparsity, ambiguity and
the attention paid to the object’s name on the learning process.

A. Developmentally relevant utterance statistics improve object
representations

To assess the impact of plausible utterance statistics on the
visual representation, Fig. 2 compares such statistics with two
upper-bound baselines: Oracle refers to supervised learning
and Ideal refers to a caregiver who always utters sentences
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Fig. 4. Analysis of the impact of the sparsity parameters on A) category
recognition and B) object instance recognition. The red points indicate the
developmentally-relevant value.

containing the correct object. Our baseline (None) does not
use any utterances relying solely on the time-contrastive loss
for visual representations. We observe that our model im-
proves category recognition over not using naming utterances,
even though it does not reach the performance of oracles.
Additionally, we examine how plausible utterance statistics
perform when used to train the text representations jointly with
the visual representations from scratch over 100 epochs. The
model yields similar outcomes, albeit necessitating significantly
more training time, as it has not yet reached convergence.
We employ t-SNE visualization to validate our learned output
feature representations. Fig. 3 shows that the models trained
with utterances exhibit better separation than without tex-
tual guidance (baseline). We conclude that developmentally-
relevant imperfect naming utterances can help to build semantic
visual representation.

B. Small changes in utterance frequency and ambiguity dras-
tically impact object representations

To understand how frequency and ambiguity of utterances
affect object representations, we systematically vary both
factors in Fig. 4 and Fig. 5, respectively. We observe that
developmentally-relevant values (red points) are close to the
inflection point of a sigmoidal function, where small shifts have
a high impact on the quality of the learned representation. This
suggests that toddler’s object learning may be quite sensitive to
caregivers’ presence and the quality of their utterances. We also
notice worse instance recognition with very few utterances in
comparison to none. We suspect that these rare and ambiguous
utterances mostly inject noise into the representation.

C. Attending to object names is crucial for learning good
visual representations

To assess the importance of attention in acquiring semantic
visual representations, we present in Fig. 6 a comparison of text
embeddings across various utterances. Even with the infrequent
application of the cross-modal loss, the model demonstrates
the capability to group utterances sharing the same category
name, clearly separating them from other utterance classes (as
illustrated by the blocks in Fig. 6). Increasing the degree of
textual guidance by small increments yields improved class
separation. In addition, more good naming utterances amplify
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Fig. 5. Analysis of the impact of naming ambiguity on A) category recognition
and B) instance recognition. A high pcorrect implies low ambiguity. The red
points indicate the developmentally-relevant value.
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Fig. 6. Analysis of the effect of the sparsity parameter and the correct naming
probability pcorrect on the textual representations. The heatmaps show the
cosine similarity between the text embeddings of utterances from two random
classes. The first element of each class is the raw category name.

linguistic attention on the name of the object being held,
thereby allowing to better guide the visual representation. The
distinct emerging clusters in Fig. 3 emphasise the models’ ca-
pacity to extract object names embedded within the utterances
accurately. When considered alongside the accuracy values of
classification experiments, this observation strongly suggests
that increased textual attention on the object name is crucial
for learning object representations.

V. CONCLUSION

We proposed a computational model of the development of
toddlers object representations during dyadic play and inves-
tigated if and how caregivers’ utterances affect learned visual
representations. We found that realistic utterance statistics elicit
more semantic visual representations and the quality of these
representations is sensitive to small shifts in the statistics of
utterances. Our analysis also revealed that realistic statistics of
utterances lead the model to focus on the object name within an
utterance, suggesting that visual and language representations
reciprocally affect each other.

The main limitation of our work is the gap between the actual
experiences of toddlers and our simplified dataset. For instance,
our “play sessions” are short and disconnected, as there is no
notion of temporal proximity between different sessions and
our captions represent a small subset of the space of possible
utterances. In addition, hands, caregivers’ visual cues and the
touch modality have been completely ignored. In the future, we
plan to validate our findings on a dataset of real-world videos
extracted from head-mounted cameras during dyadic play.
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