Project Publications
  1. Evkaya, O., & de Carvalho, M. (2024). Decoding AI: The inside story of data analysis in ChatGPT. arXiv. http://arxiv.org/abs/2404.08480
  2. Aubret, A., Schaumlöffel, T., Roig, G., & Triesch, J. (2024, April). Learning Object Semantic Similarity with Self-Supervision. Proceedings of the 2024 IEEE International Conference on Development and Learning (ICDL). https://doi.org/10.48550/arXiv.2405.05143
  3. Ernst, M. R., López, F. M., Aubret, A., Fleming, R. W., & Triesch, J. (2024, April). Self-Supervised Learning of Color Constancy. Proceedings of the 2024 IEEE International Conference on Development and Learning (ICDL). http://arxiv.org/abs/2404.08127
  4. Vilas, M. G., Adolfi, F., Poeppel, D., & Roig, G. (2024, June). Position: An Inner Interpretability Framework for AI Inspired by Lessons from Cognitive Neuroscience. Forty-First International Conference on Machine Learning. https://openreview.net/forum?id=66KmnMhGU5
  5. Oota, S. R., Çelik, E., Deniz, F., & Toneva, M. (2024, June). Speech language models lack important brain-relevant semantics. https://doi.org/10.48550/arXiv.2311.04664
  6. Lahner, B., Dwivedi, K., Iamshchinina, P., Graumann, M., Lascelles, A., Roig, G., Gifford, A. T., Pan, B., Jin, S. Y., Ratan Murty, N. A., Kay, K., Oliva, A., & Cichy, R. (2024). Modeling short visual events through the BOLD moments video fMRI dataset and metadata. Nature Communications, 15(1), 6241. https://doi.org/10.1038/s41467-024-50310-3
  7. Yu, Z., Aubret, A., Raabe, M. C., Yang, J., Yu, C., & Triesch, J. (2024). Active Gaze Behavior Boosts Self-Supervised Object Learning. arXiv. https://doi.org/10.48550/arXiv.2411.01969
  8. Neamaalkassis, H., Boubenec, Y., Muralikrishnan, R., Fiebach, C., & Tavano, A. (2024). The fundamental frequencies of our own voice. OSF. https://doi.org/10.31234/osf.io/fm9ed
  9. Taylor, J. E., Sinn, R., Iaia, C., & Fiebach, C. J. (2024). Beyond Letters: Optimal Transport as a Model for Sub-Letter Orthographic Processing. bioRxiv. https://doi.org/10.1101/2024.11.11.622929
  10. Gagl, B., Weyers, I., Eisenhauer, S., Fiebach, C. J., Colombo, M., Scarf, D., Ziegler, J. C., Grainger, J., Güntürkün, O., & Mueller, J. L. (2024). Non-Human Recognition of Orthography: How is it implemented and how does it differ from Human orthographic processing. bioRxiv. https://doi.org/10.1101/2024.06.25.600635
  11. Aubret, A., Teulière, C., & Triesch, J. (2024). Self-supervised visual learning from interactions with objects. arXiv. https://doi.org/10.48550/arXiv.2407.06704
  12. Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S., Chowdhery, A., & Zhou, D. (2023). Self-Consistency Improves Chain of Thought Reasoning in Language Models. arXiv. https://doi.org/10.48550/arXiv.2203.11171
  13. Vilas, M. G., Schaumlöffel, T., & Roig, G. (2023). Analyzing Vision Transformers for Image Classification in Class Embedding Space. Advances in Neural Information Processing Systems, 36, 40030–40041. https://proceedings.neurips.cc/paper_files/paper/2023/hash/7dd309df03d37643b96f5048b44da798-Abstract-Conference.html
  14. Oota, S., Gupta, M., & Toneva, M. (2023). Joint processing of linguistic properties in brains and language models. Advances in Neural Information Processing Systems, 36, 18001–18014. https://proceedings.neurips.cc/paper_files/paper/2023/hash/3a0e2de215bd17c39ad08ba1d16c1b12-Abstract-Conference.html
  15. Schaumlöffel, T., Vilas, M. G., & Roig, G. (2023). PEACS: PREFIX ENCODING FOR AUDITORY CAPTION SYNTHESIS. IEEE Transactions on Multimedia, 17(10), 1733–1746. https://doi.org/https://dcase.community/documents/challenge2023/technical_reports/DCASE2023_Schaumloeffel_107_t6a.pdf
  16. Schaumlöffel, T., Aubret, A., Roig, G., & Triesch, J. (2023). Caregiver Talk Shapes Toddler Vision: A Computational Study of Dyadic Play. 2023 IEEE International Conference on Development and Learning (ICDL), 67–72. https://doi.org/10.1109/ICDL55364.2023.10364409
  17. Xu, X., & Triesch, J. (2023). CIPER: Combining Invariant and Equivariant Representations Using Contrastive and Predictive Learning. In L. Iliadis, A. Papaleonidas, P. Angelov, & C. Jayne (Eds.), Artificial Neural Networks and Machine Learning – ICANN 2023 (pp. 320–331). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-44213-1_27
  18. Aubret, A., Ernst, M., Teulière, C., & Triesch, J. (2022). Time to augment self-supervised visual representation learning. arXiv. https://doi.org/10.48550/arXiv.2207.13492

Background Publications
  1. Bersch, D., Dwivedi, K., Vilas, M., Cichy, R. M., & Roig, G. (2022). Net2Brain: A Toolbox to Compare Artificial Vision Models with Human Brain Responses. https://doi.org/10.48550/arXiv.2208.09677
  2. Dwivedi, K., Cichy, R. M., & Roig, G. (2021). Unraveling Representations in Scene-selective Brain Regions Using Scene-Parsing Deep Neural Networks. Journal of Cognitive Neuroscience, 33(10), 2032–2043. https://doi.org/10.1162/jocn_a_01624
  3. Dwivedi, K., Bonner, M. F., Cichy, R. M., & Roig, G. (2021). Unveiling Functions of the Visual Cortex Using Task-Specific Deep Neural Networks. PLOS Computational Biology, 17(8), e1009267. https://doi.org/10.1371/journal.pcbi.1009267
  4. Nicholls, V. I., Krugliak, A., Alsbury-Nealy, B., Gramann, K., & Clarke, A. (2024). Congruency Effects on Object Recognition Persist When Objects Are Placed in the Wild: An AR and Mobile EEG Study (p. 2024.05.30.596613). https://doi.org/10.1101/2024.05.30.596613
  5. Sassenhagen, J., & Fiebach, C. J. (2020). Traces of Meaning Itself: Encoding Distributional Word Vectors in Brain Activity. Neurobiology of Language, 1(1), 54–76. https://doi.org/10.1162/nol_a_00003
  6. Schwartz, D., Toneva, M., & Wehbe, L. (2019). Inducing Brain-Relevant Bias in Natural Language Processing Models. https://doi.org/10.48550/arXiv.1911.03268
  7. Toneva, M., Mitchell, T. M., & Wehbe, L. (2022). Combining Computational Controls with Natural Text Reveals Aspects of Meaning Composition. Nature Computational Science, 2(11), 745–757. https://doi.org/10.1038/s43588-022-00354-6
  8. Toneva, M., & Wehbe, L. (2019). Interpreting and Improving Natural-Language Processing (in Machines) with Natural Language-Processing (in the Brain). arXiv.org. https://arxiv.org/abs/1905.11833v4