Project Publications
  1. Aubret, A., Schaumlöffel, T., Roig, G., & Triesch, J. (2024). Learning Object Semantic Similarity with Self-Supervision. Proceedings of the 2024 IEEE International Conference on Development and Learning (ICDL). https://doi.org/10.48550/arXiv.2405.05143
  2. Ernst, M. R., López, F. M., Aubret, A., Fleming, R. W., & Triesch, J. (2024). Self-Supervised Learning of Color Constancy. Proceedings of the 2024 IEEE International Conference on Development and Learning (ICDL). http://arxiv.org/abs/2404.08127
  3. Lahner, B., Dwivedi, K., Iamshchinina, P., Graumann, M., Lascelles, A., Roig, G., Gifford, A. T., Pan, B., Jin, S. Y., Ratan Murty, N. A., Kay, K., Oliva, A., & Cichy, R. (2024). Modeling Short Visual Events through the BOLD Moments Video fMRI Dataset and Metadata. Nature Communications, 15(1), 6241. https://doi.org/10.1038/s41467-024-50310-3
  4. Oota, S., Gupta, M., & Toneva, M. (2023). Joint Processing of Linguistic Properties in Brains and Language Models. Advances in Neural Information Processing Systems, 36, 18001–18014. https://proceedings.neurips.cc/paper_files/paper/2023/hash/3a0e2de215bd17c39ad08ba1d16c1b12-Abstract-Conference.html
  5. Oota, S. R., Çelik, E., Deniz, F., & Toneva, M. (2024, June 16). Speech Language Models Lack Important Brain-Relevant Semantics. https://doi.org/10.48550/arXiv.2311.04664
  6. Schaumlöffel, T., Aubret, A., Roig, G., & Triesch, J. (2023). Caregiver Talk Shapes Toddler Vision: A Computational Study of Dyadic Play. 2023 IEEE International Conference on Development and Learning (ICDL), 67–72. https://doi.org/10.1109/ICDL55364.2023.10364409
  7. Schaumlöffel, T., Vilas, M. G., & Roig, G. (2023). PEACS: PREFIX ENCODING FOR AUDITORY CAPTION SYNTHESIS. IEEE Transactions on Multimedia, 17(10), 1733–1746. https://dcase.community/documents/challenge2023/technical_reports/DCASE2023_Schaumloeffel_107_t6a.pdf
  8. Vilas, M. G., Schaumlöffel, T., & Roig, G. (2023). Analyzing Vision Transformers for Image Classification in Class Embedding Space. Advances in Neural Information Processing Systems, 36, 40030–40041. https://proceedings.neurips.cc/paper_files/paper/2023/hash/7dd309df03d37643b96f5048b44da798-Abstract-Conference.html
  9. Vilas, M. G., Adolfi, F., Poeppel, D., & Roig, G. (2024, June 6). Position: An Inner Interpretability Framework for AI Inspired by Lessons from Cognitive Neuroscience. Forty-First International Conference on Machine Learning. https://openreview.net/forum?id=66KmnMhGU5

Background Publications
  1. Bersch, D., Dwivedi, K., Vilas, M., Cichy, R. M., & Roig, G. (2022). Net2Brain: A Toolbox to Compare Artificial Vision Models with Human Brain Responses. https://doi.org/10.48550/arXiv.2208.09677
  2. Dwivedi, K., Cichy, R. M., & Roig, G. (2021). Unraveling Representations in Scene-selective Brain Regions Using Scene-Parsing Deep Neural Networks. Journal of Cognitive Neuroscience, 33(10), 2032–2043. https://doi.org/10.1162/jocn_a_01624
  3. Dwivedi, K., Bonner, M. F., Cichy, R. M., & Roig, G. (2021). Unveiling Functions of the Visual Cortex Using Task-Specific Deep Neural Networks. PLOS Computational Biology, 17(8), e1009267. https://doi.org/10.1371/journal.pcbi.1009267
  4. Nicholls, V. I., Krugliak, A., Alsbury-Nealy, B., Gramann, K., & Clarke, A. (2024). Congruency Effects on Object Recognition Persist When Objects Are Placed in the Wild: An AR and Mobile EEG Study (p. 2024.05.30.596613). https://doi.org/10.1101/2024.05.30.596613
  5. Sassenhagen, J., & Fiebach, C. J. (2020). Traces of Meaning Itself: Encoding Distributional Word Vectors in Brain Activity. Neurobiology of Language, 1(1), 54–76. https://doi.org/10.1162/nol_a_00003
  6. Schwartz, D., Toneva, M., & Wehbe, L. (2019). Inducing Brain-Relevant Bias in Natural Language Processing Models. https://doi.org/10.48550/arXiv.1911.03268
  7. Toneva, M., Mitchell, T. M., & Wehbe, L. (2022). Combining Computational Controls with Natural Text Reveals Aspects of Meaning Composition. Nature Computational Science, 2(11), 745–757. https://doi.org/10.1038/s43588-022-00354-6
  8. Toneva, M., & Wehbe, L. (2019). Interpreting and Improving Natural-Language Processing (in Machines) with Natural Language-Processing (in the Brain). arXiv.org. https://arxiv.org/abs/1905.11833v4